Minority-Aware Satisfaction Estimation in Dialogue Systems via Preference-Adaptive Reinforcement Learning

Paper

Code

Yahui Fu, Zi Haur Pang, Tatsuya Kawahara Graduate School of Informatics, Kyoto University, Japan

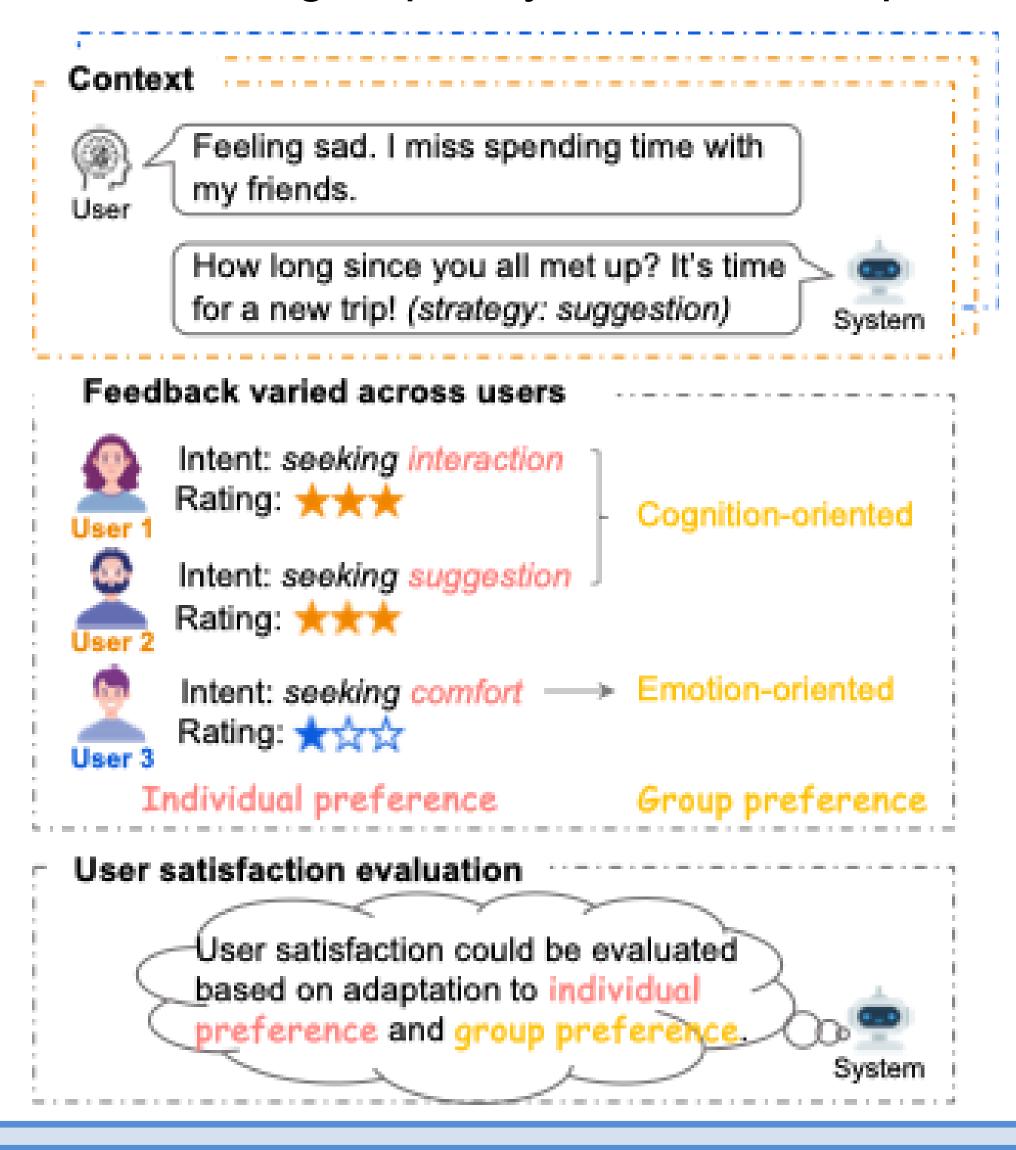
Introduction Challenges

☐ Goal:

Build a satisfaction estimation model that aligns with both majority and minority preferences for personalized adaptation.

□ Motivation:

- User satisfaction is subjective and diverse.
- Users in the same group may share similar preferences.



□ Preference Collapse in Reward Models:

Existing alignment methods often rely on aggregated or majority-voted feedback, which suppresses minority preferences and favors majority trends.

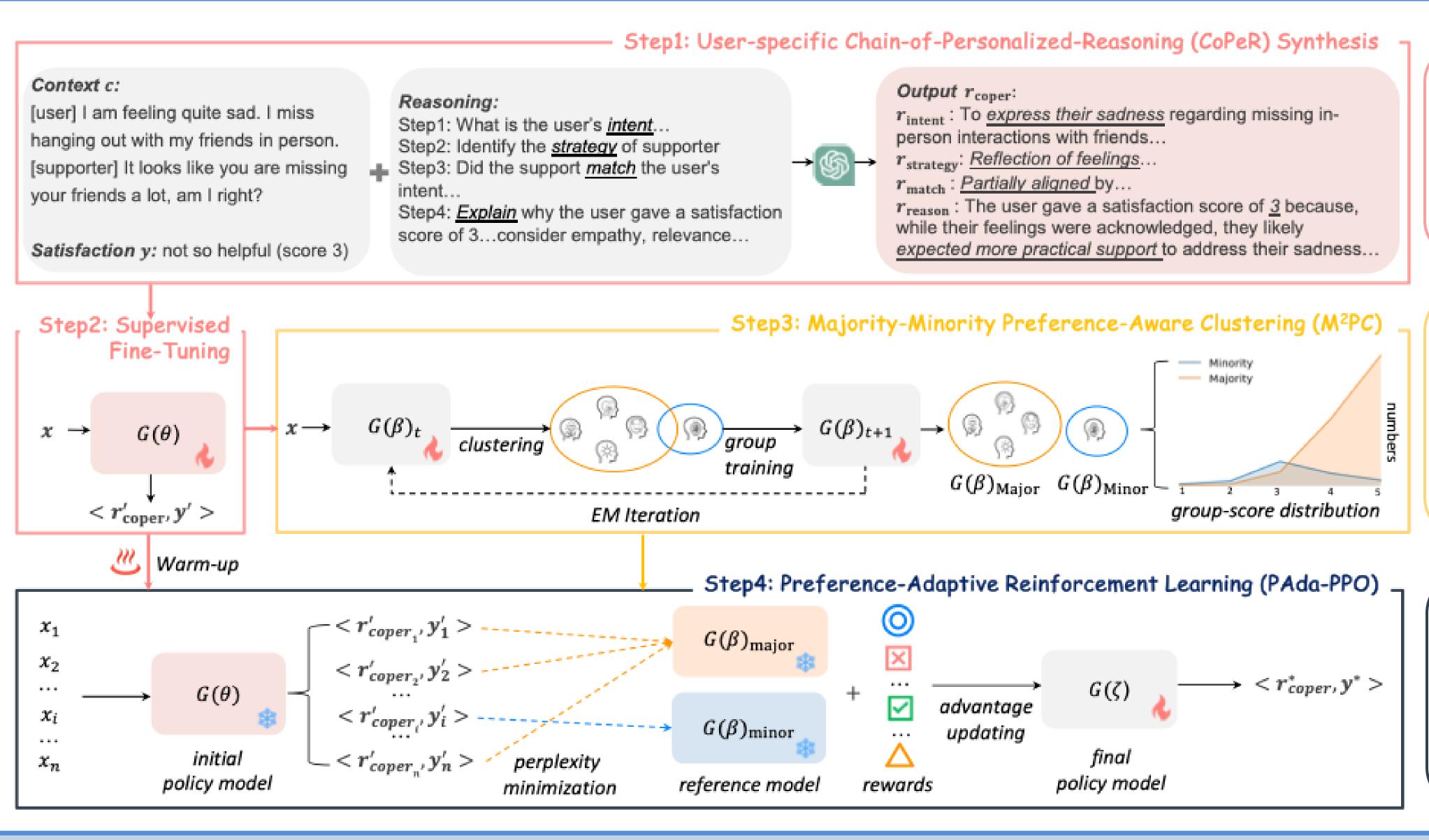
☐ Lack of Explicit Preference Labels:

Real-world dialogue data rarely includes clear majority and minority labels or explicit user rationales behind satisfaction.

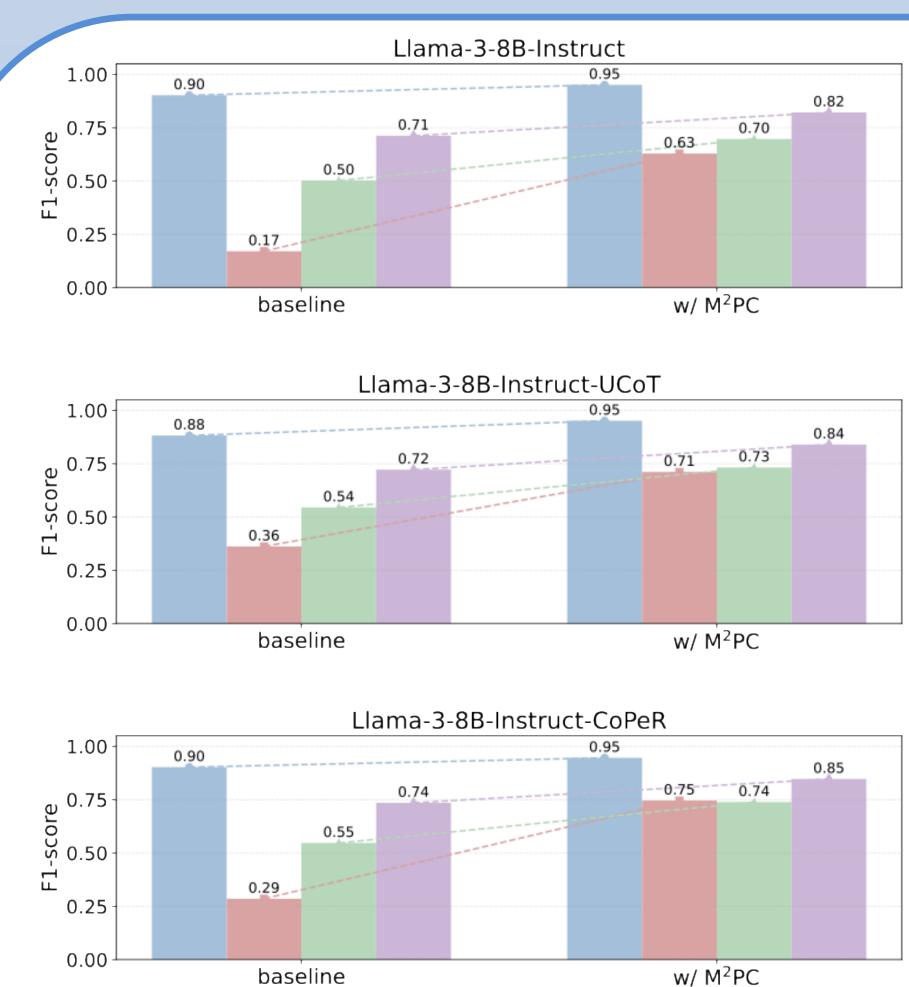
Contributions

- CoPeR: models individual reasoning (intent → strategy → match \rightarrow score).
- M²PC: EM-based unsupervised grouping by majority/ minority user preference.
- PAda-PPO: aligns policy with both individual and group reward signals.

Who Unified framework improves satisfaction prediction for both majority and minority populations.



- Prompt LLMs with User-specific Chain-of-Thought (UCoT).
- Synthesize interpretable rationales using GPT-4.1-mini.
- Use EM algorithm to separate majority/minority users via dialogue perplexity.
- Fine-tune cluster-specific models to capture group trends.
- Reference models = M²PC-trained cluster models.
- Optimize PPO objective with preference-aware KL regularization.



Overall Macro avg F1

Overall Weighted avg F1

ESConv benckmark

Models	$F_1^{ m low}$	F_1^{high}	$F_1^{\mathbf{w}}$	$F_1^{ m m}$
Llama-3-8B-Instruct	0.24	0.82	0.71	0.53
+ PPO	0.25	0.85	0.74	0.55
+ PAda-PPO	0.29	0.86	0.75	0.57
Llama-3-8B-Instruct-UCoT	0.27	0.86	0.75	0.56
+ PPO	0.22	0.88	0.76	0.55
+ PAda-PPO	0.36	0.86	0.77	0.61
Llama-3-8B-Instruct-CoPeR	0.30	0.86	0.76	0.58
+ PPO	0.34	0.88	0.78	0.61
+ PAda-PPO	0.33	0.85	0.76	0.59

high

- CoPeR vs Base: Low- $F_1 \uparrow 0.24 \rightarrow 0.30 (+25\%)$.
- PAda-PPO vs PPO (UCoT): Low- $F_1 \uparrow 0.22 \rightarrow 0.36 (+64\%)$.

Takeaways

- We address the often-overlooked preferences of minority users.
- User satisfaction is inherently subjective; reasoning enables personalization.
- M²PC uncovers diverse user clusters, while PAda-PPO aligns rewards with subgroup preferences.
- Our framework delivers *substantial* gains for minority users while preserving majority performance.